Shuxian "Trinity" Fan

2808 Calder AVE NE • Redmond, WA 98052 • fansx@uw.edu • (206) 498-6174

PROFESSIONAL EXPERIENCE

AMERICAN FAMILY INSURANCE

Machine Learning Scientist

Intern

- Developed Model-Based System to Detect Large Language Model (LLM) Hallucinations
 - Developed a model-based scoring and reference system to detect and quantify hallucinations in LLM outputs for automated insurance claims processing, improving claim validation accuracy by 5%.
 - Utilized in-context learning techniques to benchmark outputs against reference data, ensuring consistency and reducing misinformation rates.
- Enhanced out-of-distribution (OOD) Detection in Automating Medical Billing Using Transformers
 - Enhanced OOD detection in medical billing by engineering the LayoutLM architecture, optimizing document comprehension with innovative cross-modal matching loss for automating medical bill filing and processing.
 - Improved data extraction efficiency by processing 1000+ complex medical documents weekly, reducing error rates to less than 3%.

UNIVERSITY OF WASHINGTON

Research Assistant

- Valid Inference with Prediction-Powered Inference (PPI) for LLM-Driven Verbal Autopsy (VA) Narratives
 - Extended PPI framework for multinomial classifications, enhancing the reliability of AI-generated outcomes in downstream inference tasks, particularly in cause of death (COD) prediction from narratives.
 - Designed and implemented a robust data analysis pipeline to improve model accuracy and robustness, ensuring consistent COD modeling even in the presence of incomplete or noisy data.
 - Leveraging PPI to address AI model collapse by introducing parameter recalibration techniques, effectively mitigating the compounding of errors when models are trained on recursively generated data.
- Bayesian Model for Joint Analysis of Classified Data in VA Studies
 - Designed and implemented Bayesian models to jointly analyze fully and partially classified datasets, improving data integrity by maintaining a consistent structure.
 - Applied these models to standardize age categories in VA data for under-five mortality studies, leading to up to 20% improvement in estimation accuracy, directly influencing WHO health policies and contributing to more accurate global health reporting and targeted interventions.
- Bayesian Active Learning for Enhanced Child Mortality Data Collection
 - Designed and implemented Bayesian active learning strategies to refine VA questionnaire designs, shortened average questionnaire length by 20% while enhancing accuracy in child mortality assessments.

UNIVERSITY OF BRITISH COLUMBIA

Research Assistant

Statistical Consultant

• Collaborated with researchers from diverse universities and industries to tackle complex statistical challenges, delivering targeted analysis that enhanced project outcomes for over 10 high-profile studies in two years.

Selected Project Experience

- Enhanced Knot Detection in Timber via Modified Faster R-CNN
 - Led original research on timber knot detection, increasing detection rate by 8%, through the use of blob detection methods in Java and processing tracheid effect data in Python.
 - Pioneered a novel approach for detecting knots in color images of sawn timber using a modified Faster R-CNN with a Gaussian Proposal Network in PyTorch to identify elliptical knot forms, and constructed 3D knot volumes for integration into timber strength modeling.
- Bayesian Modeling of Timber Strength Using Knot Distribution
 - Proposed and implemented a Bayesian hierarchical model in R to characterize timber tensile strength.

Seattle, WA 06/2022-09/2022 06/2023-09/2023

Vancouver, BC 09/2018-08/2020 09/2019-08/2020

Seattle, WA 05/2021-Present

- Improved predictive performance by 5% over baseline models and contributed to more accurate nationwide timber grading standards in Canada.

FPINNOVATIONS

Data Scientist Intern

- Spatial Statistics for Timber Strength Analysis
 - Collaborated with the structural engineering team to develop statistical plans for analyzing the mechanical properties of sawn timber, ensuring robust data collection and analysis strategies for improved accuracy and reliability.
 - Conducted independent research using spatial statistics to characterize timber tensile strength, designing a pilot study and analyzing large-scale industrial data sets with R and Python, resulting in enhanced predictive models and improved material strength predictions.

EDUCATION

 UNIVERSITY OF WASHINGTON <i>The Doctor of Philosophy in Statistics (3.8/4.0); Advanced Data Science and ML Track</i> Graduate Student Representative of the Department of Statistics 	Seattle, WA 2020-2025
UNIVERSITY OF BRITISH COLUMBIA	Vancouver, BC
Master of Science in Statistics (4.0/4.0); distinction with honors	2018-2020
Core organizer of the UBC/SFU Joint Statistical Seminar	
• Awards: Rick WHITE Memorial Award 2020 (only 2 awarded to class)	
UNIVERSITY OF BRITISH COLUMBIA	Vancouver, BC
Bachelor of Science in Statistics (4.0/4.0); valedictorian	2015-2018
• Awards: Stanley W. Nash Medal in Statistics 2018 (only 1 awarded to class), Dr. John and Barbara PETKAU	
Scholarship 2017 (first recipient), Trek Excellence Scholarship 2016, 2017 (top 5%)	

SELECTED PUBLICATIONS

- Fan, Shuxian, et al. "From Narratives to Numbers: Valid Inference Using Language Model Predictions from Verbal Autopsies." First Conference on Language Modeling.
- Yoshida, Toshiya, **Fan, Shuxian**, et al. "Bayesian Active Questionnaire Design for Cause-of-Death Assignment Using Verbal Autopsies." Conference on Health, Inference, and Learning. PMLR, 2023.
- Fan, Shuxian, Samuel WK Wong, and James V. Zidek. "Knots and their effect on the tensile strength of lumber: A case study." Journal of Quality Technology 55.4 (2023): 510-522.
- Fan, Shuxian, et al. "Ellipse detection and localization with applications to knots in sawn lumber images." Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2021.

RELEVANT SKILLS

- Technical Skills
 - Programming: Python, SQL, R, SAS, Java, C++, Julia, MATLAB
 - Data Visualization: Matplotlib, NumPy, Pandas, ggplot2, Seaborn, D3.js, Tableau, Shiny app
 - ML and AI: PyTorch, TensorFlow, Hugging Face Transformers, OpenAI API, spaCy, AllenNLP, scikit-learn, PyCaret, Keras, XGBoost
 - Computing: Spark, Databricks, Hive, AWS, Azure, Google Cloud, Git, GitHub, Bitbucket
- Research and Statistical Skills
 - Regression, Clustering, Classification, Hypothesis testing, A/B testing, Time Series Analysis, Stochastic Processes, Experimental Design, Bayesian Nonparametrics, Active and Reinforcement Learning, Optimization
 - Text Processing (Tokenization, stemming, lemmatization, POS tagging, and NER), Text Generation, Classification and Summarization (GPT, BERT, RoBERTa), Document Understanding (LayoutLM) Computer Graphics and Sequence Modeling (CNNs, RNNs, GANs, Transformers, Autoencoders)

Vancouver, BC 05/2019-08/2019